organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Suchada Chantrapromma‡ and Hoong-Kun Fun*

X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

‡ Additional correspondence author. Permanent address: Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand

Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study T = 183 K Mean σ (C–C) = 0.004 Å R factor = 0.053 wR factor = 0.128 Data-to-parameter ratio = 11.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. 1,4-Diazabicyclo[2.2.2]octanium bis(3,5-dinitrobenzoate) monohydrate

Received 4 June 2004

Accepted 21 June 2004

Online 26 June 2004

The title compound, $C_6H_{14}N_2^{2+}\cdot 2C_7H_3N_2O_6^{-}\cdot H_2O$, is a monohydrate of a 1:2 hydrate adduct of 1,4-diazabicyclo[2.2.2]octane (DABCO) and 3,5-dinitrobenzoic acid. The (DABCOH₂)²⁺ cation adopts the role of a donor in intermolecular N-H···O hydrogen bonding, while both the 3,5-dinitrobenzoate anions act as multiple acceptors of N-H···O, O-H···O and C-H···O hydrogen bonds. These hydrogen bonds result in the formation of a three-dimensional network.

Comment

Interactions of organic acids with amine bases in the solid phase have been of interest due to their hydrogen-bonding interactions (Coupar *et al.*, 1997; Sobczyk *et al.*, 2000) and their important role in biological systems (Blow, 1976). Among the organic acids, 3,5-dinitrobenzoic acid is of interest since it readily forms the 3,5-dinitrobenzoate anion when co-crystallized with amine bases by transferring a proton. This proton transfer leads to the formation of salt-like adducts consisting of 3,5-dinitrobenzoate anions and amine-based cations in which the 3,5-dinitobenzoate anion is expected to act as a multiple acceptor of hydrogen bonds *via* nitro and carboxylate groups.

Owing to this interest, we have investigated recently the interaction between 3,5-dinitrobenzoic acid with several amine bases such as 2,4'-bipyridine (Chantrapromma *et al.*, 2002*a*), quinuclidine (Chantrapromma,Usman, Fun, Poh & Karalai, 2004) and hexamethylenetetramine (Fun *et al.*, 2003; Chantrapromma, Usman & Fun, 2004). The proton transfer process occurs in these adducts and the adduct of 3,5-dinitrobenzoic acid with hexamethylenetetramine undergoes a phase transition (Fun *et al.*, 2003). In our ongoing systematic studies on the interactions between 3,5-dinitrobenzoic acid and amine bases, the title compound, (I), was prepared.

The asymmetric unit of (I) (Fig. 1) comprises one 1,4-diazabicyclo[2.2.2]octanium dication, $[HN(CH_2CH_2)_3NH]^{2+}$ or $(DABCOH_2)^{2+}$, two 3,5-dinitrobenzote anions and one water molecule. Each molecule of 3,5-dinitrobenzoic acid has transferred a proton from its carboxyl group to an N atom of

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1 The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering scheme.

DABCO which, together with the water molecule, has resulted in the asymmetric unit being a hydrated salt.

This protonation process is accompanied by an increase in the N–C bond distances around these N atoms [average N– C bond distance is 1.492 (4) Å]. These N–C bond distances agree with the mean value of 1.502 (15) Å reported for C–N⁺ bonds by Allen *et al.* (1987). The protonated N–C bonds in the doubly protonated (DABCOH₂)²⁺ are comparable with the protonated N–C bond in the singly protonated (DABCOH)⁺ cation (Chantrapromma *et al.*, 2002*b*; Ferguson *et al.*, 1997).

The N-C-C-N-C-C six-membered rings of the $(DABCOH_2)^{2+}$ cation adopt a slightly twisted boat conformation with puckering parameters (Cremer & Pople, 1975) Q = 0.827 (3) Å, $\theta = 89.9$ (2)° and $\varphi = 348.4$ (2)° for the N1/C1/C2/N2/C3/C4 ring, Q = 0.832 (3) Å, $\theta = 90.1$ (2)° and $\varphi = 191.6$ (2)° for the N1/C1/C2/N2/C6/C5 ring, and Q = 0.825 (3) Å, $\theta = 89.7$ (2)° and $\varphi = 348.3$ (2)° for the N1/C4/C3/N2/C6/C5 ring. The bond lengths and angles within the two symmetry-independent 3,5-dinitrobenzoate anions are comparable and both molecules are nearly planar. The geometric parameters in the 3,5-dinitrobenzoate anion are also comparable with the corresponding values in its adducts with quinuclidine (Chantrapromma, Usman, Fun, Poh & Karalai, 2004).

In the crystal structure of (I) (Fig. 2), the $(DABCOH_2)^{2+}$ cation and 3,5-dinitrobenzoate anions are linked by intermolecular $N-H\cdots O$ hydrogen bonds (Table 2), with the $(DABCOH_2)^{2+}$ cation acting as a donor. The carboxylate O atoms act as acceptors of intermolecular $O-H\cdots O$ hydrogen bonds with the water molecules. In addition to the electrostatic, $N-H\cdots O$ and $O-H\cdots O$ interactions, the crystal structure is also stabilized by $C-H\cdots O$ interactions (Table 2). These interactions link the ions and water molecules into a three-dimensional network.

Figure 2

Packing diagram of the title compound, viewed down the c axis, illustrating the intermolecular hydrogen bonds (dashed lines).

Experimental

Equimolar amounts of 1,4-diazabicyclo[2.2.2]octane (0.34 g, 3 mmol) and 3,5-dinitrobenzoic acid (0.64 g, 3 mmol) were mixed and dissolved in ethanol (50 ml), with addition of 4 ml of distilled water, and the mixture was warmed to the temperature range 328–333 K until a clear solution was obtained. The solution was then filtered and the filtrate was left to evaporate slowly in air. Colorless single crystals, suitable for X-ray diffraction studies, were obtained from the solution after a few days [m.p. 547–548 K (decomposition)].

Crystal data

-	
$C_6H_{14}N_2^{2+} \cdot 2C_7H_3N_2O_6^{-} \cdot H_2O$	$D_x = 1.600 \text{ Mg m}^{-3}$
$M_r = 554.44$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 10514
a = 11.6505(5)Å	reflections
b = 10.4942(5) Å	$\theta = 2.7 - 25.0^{\circ}$
c = 19.4752 (9) Å	$\mu = 0.14 \text{ mm}^{-1}$
$\beta = 104.799 \ (1)^{\circ}$	T = 183 (2) K
$V = 2302.10 (18) \text{ Å}^3$	Block, colorless
Z = 4	$0.44 \times 0.32 \times 0.16 \text{ mm}$

2527 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.076$

 $\theta_{\rm max} = 25.0^{\circ}$

 $h = -13 \rightarrow 13$

 $k = -12 \rightarrow 12$ $l = -20 \rightarrow 23$

Data collection

Bruker SMART CCD area-detector
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\rm min} = 0.943, T_{\rm max} = 0.979$
10 514 measured reflections
3987 independent reflections

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.0309P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.053$ where $P = (F_o^2 + 2F_c^2)/3$ $wR(F^2) = 0.128$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.38 \ {\rm e} \ {\rm \AA}$ S = 0.94 $\Delta \rho_{\rm min} = -0.44 \text{ e } \text{\AA}^{-3}$ 3987 reflections Extinction correction: SHELXTL 367 parameters Extinction coefficient: 0.0103 (11) H atoms treated by a mixture of independent and constrained refinement

e 1

Selected	geometric	parameters	(Å,	°).
----------	-----------	------------	-----	-----

O5-C13	1.238 (3)	N2-C6	1.488 (4)
O6-C13	1.286 (3)	N2-C2	1.490 (3)
O11-C20	1.234 (3)	N3-C7	1.473 (3)
O12-C20	1.283 (3)	N4-C9	1.482 (3)
N1-C4	1.491 (3)	N5-C14	1.473 (4)
N1-C5	1.497 (3)	N6-C16	1.482 (3)
N1-C1	1.497 (3)	C11-C13	1.521 (4)
N2-C3	1.487 (3)	C18-C20	1.529 (4)
O5-C13-O6	125.6 (3)	O11-C20-O12	125.4 (3)
O6-C13-C11	114.3 (2)	O12-C20-C18	115.7 (2)

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$N1-H1N1\cdotsO11^{i}$	0.94 (1)	2.56 (2)	3.119 (3)	118 (2)
$N1 - H1N1 \cdots O12^i$	0.94 (1)	1.72 (2)	2.658 (3)	174 (3)
$N2-H1N2\cdots O6^{ii}$	0.94 (1)	1.63 (3)	2.566 (3)	174 (4)
$O1W - H1W1 \cdots O5^{iii}$	0.90(1)	1.97 (3)	2.823 (3)	156 (3)
O1W−H2W1···O11	0.91 (1)	1.95 (3)	2.839 (3)	168 (3)
$C1 - H1B \cdots O1^{iv}$	0.99	2.50	3.332 (4)	141
$C3-H3A\cdots O4$	0.99	2.60	3.409 (3)	139
$C3-H3B\cdots O5^{iii}$	0.99	2.43	3.306 (4)	148
$C6-H6B\cdots O2^{v}$	0.99	2.51	3.397 (4)	149
$C6-H6B\cdots O7^{v}$	0.99	2.54	3.189 (4)	123
$C8-H8\cdots O3^{v}$	0.95	2.49	3.264 (3)	138
$C17-H17\cdots O1W$	0.95	2.41	3.315 (4)	160

Symmetry codes: (i) $\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$; (ii) x - 1, y, z; (iii) $\frac{1}{2} - x, y - \frac{1}{2}, \frac{1}{2} - z$; (iv) $x - \frac{1}{2}, \frac{3}{2} - y, \frac{1}{2} + z$; (v) -x, 2 - y, -z.

H atoms of the water molecule and the H atoms attached to atoms N1 and N2 were located in a difference map. They were refined isotropically with the O-H and H···H distances restrained to 0.89 (1) and 1.39 (1) Å, respectively, and with N-H = 0.93 (1) Å. The remaining H atoms were positioned geometrically (C-H = 0.95–

0.99 Å) and allowed to ride on their parent C atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

SC thanks Prince of Songkla University for partial financial support. The authors thank the Malaysian Government and Universiti Sains Malaysia for research grant R&D No. 304/PFIZIK/670011.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Blow, D. M. (1976). Acc. Chem. Res. 9, 145–156.
- Chantrapromma, S., Usman, A. & Fun, H.-K. (2004). J. Mol. Struct. Accepted.
- Chantrapromma, S., Usman, A., Fun, H.-K., Poh, B. L. & Karalai, C. (2002*a*). *Acta Cryst.* C58, o589–o590.
- Chantrapromma, S., Usman, A., Fun, H.-K., Poh, B. L. & Karalai, C. (2002b). Acta Cryst. C58, 0102–0104.
- Chantrapromma, S., Usman, A., Fun, H. K., Poh, B. L. & Karalai, C. (2004). J. Mol. Struct., 688, 59–65.
- Coupar, P. I., Glidewell, C. & Ferguson, G. (1997). Acta Cryst. B53, 521-533.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
- Ferguson, G., Bell, W., Coupar, P. I. & Glidewell, C. (1997). Acta Cryst. B53, 534–543.
- Fun, H.-K., Usman, A., Chantrapromma, S., Osman, J., Ong, L. H., Tilly, D. R. & Ishibashi, Y. (2003). *Solid State Commun.* 127, 677–682.
 - Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
 - Sheldrick, G. M. (1997). SHELXTL. Version. 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
 - Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
 - Sobczyk, L., Lis, T., Olejnik, Z. & Majerz, I. (2000). J. Mol. Struct. 552, 233– 241.
 - Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.